
QUALITY PLUS TECHNOLOGIES, INC.
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

FUNCTION POINT FOCUS:

Requirements are (the Size of) the
Problem

by Carol Dekkers, Quality Plus Technologies, Inc.

email: dekkers@qualityplustech.com

Published in IT Metrics Strategies
Vol. III, No. 10, October 1997

 Not much has changed in software development since 1988 when David
Card stated "Software estimation occurs at an earlier stage in software
development than in most other engineering disciplines... most engineers can
wait until after preliminary design to estimate product cost"i Just two months
ago in ITMS, Lawrence Putnam and Ware Myers’ made a similar observation.
One of their recommendations to improve software estimation stated: “Work
toward getting clients to let you size the risks and nail down the requirements
before expecting a firm bid”.ii

 Software estimation is the process by which an approximation of work
effort to develop software is derived based on an estimation model or equation.
This work effort is a function of the software size, development team skills,
development language, methodology, and many other factors which vary
depending on the estimation model. As the technology independent measure of
software size, function points are only dependent on the user requirements.
Here we have a fundamental challenge: how can we count function points from
user requirements, when we haven’t identified the user requirements? This
article explores the issue of user requirements throughout the development life
cycle, and the challenges they pose to estimation and function point counting if
they are ill defined.

A Quick Refresher on Function Points

QUALITY PLUS TECHNOLOGIES, INC. Page 2 of 6
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

 Frequent readers of this column will recall that Function Points are a
quantification of software size based on its functional user requirements.
Similar to the square feet derived from a floor plan (requirements), function
points are derived from functional user requirements. Function points reflect
“what” the application must do and are independent of “how” the software is
implemented. (Given the same set of user requirements, the function point
size will be identical for two applications developed using different programming
languages). The biggest advantages of function points over lines-of-code for
estimating may not be intuitive: 1. Function points are independent of the
development language and technology, lines-of-code are not. 2. Function
points can be counted as soon as user requirements have been identified, lines-
of-code can only be counted once coding is finished.

 The biggest challenge in function point counting lies not with the method
or the counting rules, but with the identification of the functional user
requirements from which we can do a function point count. Once we have the
functional user requirements and basic function point training, it is a
straightforward process to derive the function point count.

 Most estimating models require an input of the estimated software size,
together with many other factors (such as development language, methodology,
etc.) to predict the work effort. If there is no value to input for software size due
to a lack of requirements, the estimating equation will be incomplete. It is
important to note that estimating models are passive and can only respond to
the input data they are provided. Without a software size input, developers are
as challenged as a house builder trying to quote a price without knowing the
square foot size of the house.

 A look at requirements gathering at various life cycle stages illustrates
the challenges (and opportunities) to obtaining a realistic value of software size.

Preliminary Application Requirements

 When a project is first conceived, the requirements may be little more
than “notes on a napkin”. Not only is it difficult to derive user requirements from
napkin scrawls, it is downright impossible to build software to meet them.
However, it is at this stage that IT managers are often tasked to transform crude
requirements into a realistic estimate of work effort. Famous management
phrases such as “Give me a ballpark number” or “I won’t hold you to this
estimate” are often forgotten once the ballpark is published as the estimate.

 How can we provide a “ballpark” estimate with some basis in reality at
this early stage? Our only hope is to document our assumptions of what the
functional user requirements could be, do a high level function point estimate,

QUALITY PLUS TECHNOLOGIES, INC. Page 3 of 6
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

and feed the numbers and our assumptions about the project into an estimating
tool to derive an estimated work effort.

 For example, if we are given a sketchy set of requirements for an
employee system that includes worker demographics, job moves and early
retirement, we can do a high level estimate of software size in function points.
We do this by translating these “requirements” into functional user requirements
terms, and then doing a first cut function point count based on a one file model
or other approximation method.1 This provides us with an auditable, factual
base for later reference should customers (or others) challenge our work effort
estimates. Additionally, when further requirements details are known as we
progress into system design, the application size and thus the estimated work
effort will increase.

It is helpful to have the original, anticipated set of requirements and the
preliminary function point count available to illustrate why the work effort
estimate has changed throughout the development project.

Even if we have the luxury of documented functional user requirements and
have “frozen” the design (analogous to signing a contract to build a house
based on a final floor plan), these requirements may not equal the size of the
finished product . Typically the functional size (FP) of an application increases
during development for one of the following reasons:

1. Users may have forgotten to mention requirements, or have assumed that
requirements that they take for granted will be included when the system is
implemented. Missed or overlooked requirements increase the FP count size
and can have an exponential impact on the work effort required to deliver the
application.

2. Both developers and users explore requirements based on their existing way
of doing business. We don’t know what queries will arise once we get our new
reports, because we haven’t yet seen the data. In many development shops
these new requirements may be deferred as enhancements while in others,
these new requirements become “drop dead” requirements for the current
release. This scope creep (or in some cases “scope leap”) increases the
functional size of the application, and if not managed they can cripple even the
best planned project. Sizing the scope creep using function points
accomplishes two goals: we can derive new work effort estimates to complete

1 Contact the author for further information about these and other high level function point estimating methods.

QUALITY PLUS TECHNOLOGIES, INC. Page 4 of 6
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

the existing project based on the new size, and we can use it as an “expansion
factor” when we are extimating the FP size of future projects.

3. Many “bells and whistles” requirements arise after users view a prototype
and realize what functionality is available to them. These requirements count
as functional user requirements (and thus count as additional function points)
as long as they represent functionality that the user has specifically requested
and received. In other words, functionality that the user is willing to pay for. It
is important to note that the ease of implementation does not affect the Function
Point size because function points are independent of how the requirements are
delivered. The impact of adding (or changing) these new requirements
however, increases the FP size and translates into a larger work effort.

In all of these cases, it is important to track the increase in FP size, and use the
growth rates when estimating future projects. (For example, if the function point
size of an application doubles between requirements to implementation, the
next time the work effort is estimated on a project, an estimate should also be
done initially taking into account the possibility of it too doubling in size). History
is a much better predictor of the future than theoretical models.

User Requirements at the Analysis and Design Phases

 Seasoned systems professionals know that the further along one
proceeds in the development life cycle, the better the requirements are defined.
In addition, as requirements are formalized and documented on paper, users
introduce further requirements. In the words of Putnam and Myers “Accept the
reality that requirements develop over time”iii. This poses a challenge as the
software size and estimates of work effort are usually calculated at only a few
milestones along the development process, not whenever a new requirement is
identified. In traditional waterfall development this occurs typically at the end of
requirements analysis and at the end of the functional design. (Milestone points
for other development approaches vary with the methodology). Once the
functional design is complete, it is akin to the system “blueprint” after which
time, new requirements and rework cycles impact cost and schedules
exponentially.

 With this in mind, it is critical that the requirements (and the
corresponding software size) at these milestone points be as accurate and as
complete as possible. The more complete the requirements are, the easier it is
to obtain the software size, and the more accurate the work effort estimate can
be. Joint application design (JAD) sessions, user walkthroughs and user cross
training about development life cycles are widely documented as valuable tools

QUALITY PLUS TECHNOLOGIES, INC. Page 5 of 6
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

to getting the requirements right. User involvement and accountability to define
the system functional requirements are as critical in systems development as
the involvement of a home buyer in designing a home. To borrow a phrase
from Capers Jones “It should be considered professional malpractice” for users
to abdicate their responsibilities of defining requirements to system developers.

 Once user requirements are documented (and a function point count
generated), their completeness should be reviewed and tested prior to
estimating the work effort. One test for requirements completeness can be
done by comparing the project’s function point profile (function point percentage
breakdown across the five function types) to the function point profile of similar
existing applications. Discrepancies often highlight incomplete requirements.

Impact of incomplete or incorrect requirements

 Because function point size is based on the functional user requirements,
it is a given that if the requirements are incomplete or incorrect, the function
point size will also be incorrect. Users need to know how profound the impact
of incorrect or unspecified requirements are on work effort estimates. The cost
and effort of rework and redesign attributable to these requirements problems
can often exceed the entire cost of developing the system if the requirements
were originally correct. Requirements that evolve throughout the project are
difficult to estimate in the early stages of system design, and can wreak havoc
on the development effort and schedules. New estimates of work effort
because of newly discovered or corrected requirements are not a result of
function point miscalculations, but rather due to an increase in the software’s
function point size.

Summary

 Software estimation is a complex issue for which many estimation
models have been proposed. None of the models, however, can estimate
accurately if the user requirements are vague, including those based on
function points. Well documented functional user requirements are a pre-
requisite to sound application development practices. Their absence impedes
not only function point counting, but also accurate software estimation.

 It is critical for user management to know that correct and complete user
requirements are mandatory pre-requisites to both software sizing and to
accurate (work effort) estimating. Without solid user requirements on which to
base their estimates, software managers are like builders estimating
construction time without knowing the size of the house.

QUALITY PLUS TECHNOLOGIES, INC. Page 6 of 6
 Software and Technology Solutions

Your Software Measurement Professionals www.qualityplustech.com
copyright 1997 QUALITY PLUS TECHNOLOGIES, INC. Voice: (727) 867-1949

==
Carol A. Dekkers is the President of Quality Plus Technologies, Inc. a management
consulting firm specializing in quality initiatives, software metrics, and process
improvement. She is a frequent presenter and trainer at both U.S and international
quality and measurement conferences and is credentialled as a Certified Management
Consultant (CMC), a Certified Function Point Specialist (CFPS), a professional
engineer (Canada) and an Information Systems Professional (ISP). She is the Vice
President and formerly the Director of Counting Standards on the International
Function Point Users Group (IFPUG) Board of Directors, and is a project editor within
the ISO Functional Size Measurement workgroup (ISO/IEC/JTC1/SC7 WG12).

i David N. Card in The Role of Measurement in Software Engineering, July 1988
ii Putnam L. and Myers, W., Familiar Metrics Management: “The Software Cost Estimation Problem is Solved”,

ITMS Volume III, No.7, July 1997, p.10.
iii Ibid, p.10

